Fuel \& Advanced Combustion

Lecture
 Chemical Reaction

Ideal Gas Model

The ideal gas equation of state is:

$$
P V=m R T=m\left(\frac{\bar{R}}{\bar{M}}\right) T=n \bar{R} T
$$

where \bar{R} is the Universal Gas Constant ($8.314 \mathrm{~kJ} / \mathrm{kmol} \mathrm{K}$), \bar{M} is the molecular weight and n is the number of moles.

Specific internal energy (units: $\mathrm{kJ} / \mathrm{kg}$)

$$
u(T)=\int c_{v}(T) d T
$$

Specific enthalpy (units: $\mathrm{kJ} / \mathrm{kg}$)

$$
h(T)=\int c_{p}(T) d T
$$

Specific entropy (units: kJ/kg K)

$$
\begin{aligned}
& s(P, T)=s^{o}(T)-R \ln \left(P / P_{o}\right) \\
& \left(P_{o}=1 \text { bar, } s^{o} \text { entropy at } P_{o}\right)
\end{aligned}
$$

Ideal Gas Model for Mixtures

The mass m of a mixture is equal to the sum of the mass of n components

$$
m=\sum_{i=1}^{n} m_{i}
$$

The mass fraction, x_{i}, of any given species is defined as:

$$
x_{i}=\frac{m_{i}}{m} \quad \text { and } \quad \sum_{i=1}^{n} x_{i}=1
$$

The mixture internal energy U and enthalpy H (units: kJ) is:

$$
U=m u=\sum_{i=1}^{n} m_{i} u_{i} \quad H=m h=\sum_{i=1}^{n} m_{i} h_{i}
$$

where u_{i} and h_{i} are mass specific values (units: $\mathrm{kJ} / \mathrm{kg}$)
The mixture specific internal energy u and enthalpy h is:

$$
u=\frac{U}{m}=\sum_{i=1}^{n} \frac{m_{i} u_{i}}{m}=\sum_{i=1}^{n} x_{i} u_{i} \quad h=\frac{H}{m}=\sum_{i=1}^{n} \frac{m_{i} h_{i}}{m}=\sum_{i=1}^{n} x_{i} h_{i}
$$

Ideal Gas Model for Mixtures

The total number of moles in the mixture is:

$$
n=\sum_{i=1}^{n} n_{i}
$$

The mole fraction, y_{i}, of any given species is defined as:

$$
y_{i}=\frac{n_{i}}{n} \quad \text { and } \quad \sum_{i=1}^{n} y_{i}=1
$$

The mixture internal energy U and enthalpy H (units: kJ) is:

$$
U=\sum_{i=1}^{n} n_{i} \bar{u}_{i} \quad H=\sum_{i=1}^{n} n_{i} \bar{h}_{i}
$$

where \bar{u}_{i} and \bar{h}_{i} are molar specific values (units: $\mathrm{kJ} / \mathrm{kmol}$)
The mixture molar specific internal energy and enthalpy (units $\mathrm{kJ} / \mathrm{kmol}$) is:

$$
\bar{u}=\sum_{i=1}^{n} y_{i} \bar{u}_{i} \quad \bar{h}=\sum_{i=1}^{n} y_{i} \bar{h}_{i}
$$

Ideal Gas Model for Mixtures

Mass specific entropy ($\mathrm{kJ} / \mathrm{kg} \mathrm{K}$) molar specific mixture entropy $(\mathrm{kJ} / \mathrm{mol} \mathrm{K})$:

$$
s=\sum_{i=1}^{n} x_{i}\left(s_{i}^{o}-R_{i} \ln \left(P_{i} / P\right)\right)-R \ln \left(P / P_{o}\right) \quad \bar{s}=\sum_{i=1}^{n} y_{i}\left(\bar{s}_{i}^{o}-R_{i} \ln y_{i}\right)-\bar{R} \ln \left(P / P_{o}\right)
$$

The mixture molecular weight, \bar{M}, is given by:

$$
\bar{M}=\frac{m}{n}=\frac{\sum_{i=1}^{n} m_{i}}{n}=\sum_{i=1}^{n} \frac{n_{i} \bar{M}_{i}}{n}=\sum_{i=1}^{n} y_{i} \bar{M}_{i}
$$

The partial pressure of a component, P_{i}, in the mixture (units: kPa) is:

$$
y_{i}=\frac{n_{i}}{n}=\frac{P_{i} V / R T}{P V / R T}=\frac{P_{i}}{P} \quad \text { or } \quad P_{i}=y_{i} P
$$

Composition of Standard Dry Air

Air is a mixture of gases including oxygen $\left(\mathrm{O}_{2}\right)$, nitrogen $\left(\mathrm{N}_{2}\right)$, argon (Ar), carbon dioxide $\left(\mathrm{CO}_{2}\right)$, water vapour $\left(\mathrm{H}_{2} \mathrm{O}\right) \ldots$

For combustion dry air is taken to be composed of $21 \% \mathrm{O}_{2}$ and $79 \% \mathrm{~N}_{2}$ by volume ($y_{O 2}=0.21, y_{N 2}=0.79$).

$$
\frac{n_{N_{2}}}{n_{O_{2}}}=\frac{n_{N_{2}}}{n_{\text {tot }}} \cdot \frac{n_{\text {tot }}}{n_{O_{2}}}=\frac{y_{N_{2}}}{y_{O_{2}}}=\frac{0.79}{0.21}=3.76
$$

For every mole of O_{2} there are 3.76 moles of N_{2}.
Molecular weight of air is $\bar{M}_{\text {air }}=\sum_{i=1}^{n} y_{i} \bar{M}_{i}=y_{O_{2}} \cdot \bar{M}_{O_{2}}+y_{N_{2}} \cdot \bar{M}_{N_{2}}$

$$
=0.21(32)+0.79(28)=28.84 \mathrm{~kg} / \mathrm{kmol}
$$

The amount of water in moist air at temperature T is specified by the specific humidity (ω) or the relative humidity (Φ) defined as follows:

$$
\omega=\frac{m_{H^{\prime} O}}{m_{\text {air }}}
$$

$$
\Phi=\frac{P_{H_{2} \mathrm{O}}}{P_{\text {sat }}(T)} \quad 0<\Phi<1
$$

Combustion Stoichiometry

If sufficient oxygen is available, a hydrocarbon fuel can be completely oxidized, the carbon is converted to carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and the hydrogen is converted to water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

The overall chemical equation for the complete combustion of one mole of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ with oxygen is:

$$
\begin{aligned}
\mathrm{C}_{3} \mathrm{H}_{8}+a \mathrm{O}_{2} & \rightarrow b \mathrm{CO}_{2}+\underbrace{c \mathrm{H}_{2} \mathrm{O}} \\
& \# \text { of moles }-\underbrace{-} \text { species }
\end{aligned}
$$

Elements cannot be created or destroyed, so
C balance: $\quad 3=b \quad \rightarrow b=3$
H balance: $\quad 8=2 c \quad \rightarrow c=4$
O balance: $\quad 2 a=2 b+c \rightarrow a=5$
Thus the stoichiometric reaction is:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Combustion Stoichiometry

Air contains molecular nitrogen N_{2}, if products are at a "low" temperature the nitrogen is not significantly affected by the reaction, it is considered inert.

The complete reaction of a general hydrocarbon $\mathrm{C}_{\alpha} \mathrm{H}_{\beta}$ with air is:

$$
\mathrm{C}_{\alpha} \mathrm{H}_{\beta}+a\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow b \mathrm{CO}_{2}+c \mathrm{H}_{2} \mathrm{O}+d \mathrm{~N}_{2}
$$

C balance: $\quad \alpha=b \rightarrow b=\alpha$
H balance: $\quad \beta=2 c \rightarrow c=\beta / 2$
O balance: $\quad 2 a=2 b+c \rightarrow a=b+c / 2 \rightarrow a=\alpha+\beta / 4$
N balance: $\quad 2(3.76) a=2 d \rightarrow d=3.76 a / 2 \rightarrow d=3.76(\alpha+\beta / 4)$

$$
C_{\alpha} H_{\beta}+\left(\alpha+\frac{\beta}{4}\right)\left(O_{2}+3.76 N_{2}\right) \rightarrow \alpha \mathrm{CO}_{2}+\frac{\beta}{2} \mathrm{H}_{2} \mathrm{O}+3.76\left(\alpha+\frac{\beta}{4}\right) N_{2}
$$

Example: The stoichiometric reaction of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right) \alpha=8$ and $\beta=18$

$$
\mathrm{C}_{8} \mathrm{H}_{18}+(12.5)\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+47 \mathrm{~N}_{2}
$$

Combustion Stoichiometry

The stoichiometric mass based air/fuel ratio for $\mathrm{C}_{\alpha} \mathrm{H}_{\beta}$ fuel is:

$$
(A / F)_{s}=\frac{m_{\text {air }}}{m_{\text {fuel }}}=\frac{\left(\sum n_{i} \bar{M}_{i}\right)_{\text {air }}}{\left(\sum n_{i} \bar{M}_{i}\right)_{\text {fuel }}}=\frac{\left(\alpha+\frac{\beta}{4}\right) \bar{M}_{O_{2}}+3.76\left(\alpha+\frac{\beta}{4}\right) \bar{M}_{N_{2}}}{\alpha \bar{M}_{C}+\beta \bar{M}_{H}}
$$

Substituting the respective molecular weights and dividing top and bottom by α one gets the following expression that only depends on the ratio of the number of hydrogen atoms to hydrogen atoms (β / α) in the fuel.

$$
(A / F)_{s}=\frac{1}{(F / A)_{s}}=\frac{\left(1+\frac{(\beta / \alpha)}{4}\right)(32+3.76 \cdot 28)}{12+(\beta / \alpha) \cdot 1}
$$

Note above equation only applies to stoichiometric mixture
Example: For octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right), \beta / \alpha=2.25 \rightarrow(A / F)_{s}=15.1$

$$
\left(\text { gasoline }(A / F)_{\mathrm{s}} \approx 14.6\right.
$$

Fuel Lean Mixture

Fuel-air mixtures with more than stoichiometric air (excess air) can burn
With excess air you have fuel lean combustion
At low combustion temperatures, the extra air appears in the products as O_{2} and N_{2} :

$$
\mathrm{C}_{\alpha} \mathrm{H}_{\beta}+\gamma\left(\alpha+\frac{\beta}{4}\right)\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow \alpha \mathrm{CO}_{2}+\frac{\beta}{2} \mathrm{H}_{2} \mathrm{O}+d \mathrm{~N}_{2}+e \mathrm{O}_{2}
$$

a fuel lean mixture has excess air, so $\gamma>1$
Above reaction equation has two unknowns (d, e) and we have two atom balance equations (O, N) so can solve for the unknowns

Fuel Rich Mixture

Fuel-air mixtures with less than stoichiometric air (excess fuel) can burn.
With less than stoichiometric air you have fuel rich combustion, there is insufficient oxygen to oxidize all the C and H in the fuel to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Get incomplete combustion where carbon monoxide (CO) and molecular hydrogen $\left(\mathrm{H}_{2}\right)$ also appear in the products.

$$
\mathrm{C}_{\alpha} \mathrm{H}_{\beta}+\gamma\left(\alpha+\frac{\beta}{4}\right)\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow \alpha \mathrm{CO}_{2}+\frac{\beta}{2} \mathrm{H}_{2} \mathrm{O}+d \mathrm{~N}_{2}+e \mathrm{CO}+f \mathrm{H}_{2}
$$

a fuel rich mixture has insufficient air $\rightarrow \gamma<1$
Above reaction equation has three unknowns (d, e, f) and we only have two atom balance equations (O, N) so cannot solve for the unknowns unless additional information about the products is given.

Off-Stoichiometric Mixtures

The equivalence ratio, ϕ, is commonly used to indicate if a mixture is stoichiometric, fuel lean, or fuel rich.

$$
\phi=\frac{(A / F)_{s}}{(A / F)_{\text {mixture }}}=\frac{(F / A)_{\text {mixure }}}{(F / A)_{s}}
$$

stoichiometric $\phi=1$
fuel lean $\quad \phi<1$
fuel rich $\quad \phi>1$

Stoichiometric mixture:

$$
C_{\alpha} H_{\beta}+\left(\alpha+\frac{\beta}{4}\right)\left(O_{2}+3.76 N_{2}\right) \rightarrow \text { Products }
$$

Off-stoichiometric mixture:

$$
C_{\alpha} H_{\beta}+\frac{1}{\phi}\left(\alpha+\frac{\beta}{4}\right)\left(O_{2}+3.76 N_{2}\right) \rightarrow \text { Products } \quad \gamma=\frac{1}{\phi}
$$

Off-stoichiometric Conditions

Other terminology used to describe how much air is used in combustion:
110% stoichiometric air $=110 \%$ theoretical air $=10 \%$ excess air

$$
C_{3} H_{8}+\gamma\left(\alpha+\frac{\beta}{4}\right)\left(O_{2}+3.76 N_{2}\right) \quad \gamma=1.1 \rightarrow \text { mixture is fuel lean }
$$

Example: Consider a reaction of octane with 10% excess air, what is ϕ ?
Stoichiometric : $\mathrm{C}_{8} \mathrm{H}_{18}+12.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+47 \mathrm{~N}_{2}$
10% excess air is: $\mathrm{C}_{8} \mathrm{H}_{18}+1.1(12.5)\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+a \mathrm{O}_{2}+b \mathrm{~N}_{2}$

O balance: $1.1(12.5)(2)=16+9+2 a \rightarrow a=1.25$,
N balance: 1.1(12.5)(3.76)(2) $=2 b \quad \rightarrow \quad b=51.7$

$$
\phi=\frac{(A / F)_{s}}{(A / F)_{\text {mixture }}}=\frac{12.5(4.76) / 1}{1.1(12.5)(4.76) / 1}=0.91 \quad \frac{1}{\phi}=\frac{1}{.91}=1.1
$$

First Law Analysis for Reacting System

Consider a constant pressure process in which n_{f} moles of fuel react with n_{a} moles of air to produce n_{p} moles of product:

State 1

State 2
Reaction

Applying First Law with state 1 being the reactants at P_{1}, T_{1} and state 2 being products at P_{2}, T_{2} :

First Law Analysis for Reacting System

$$
\begin{gathered}
Q=\Delta U+W \\
Q_{1 \rightarrow 2}=\left(U_{2}-U_{1}\right)+P\left(V_{2}-V_{1}\right) \\
=\left(U_{2}+P_{2} V_{2}\right)-\left(U_{1}+P_{1} V_{1}\right) \\
=H_{2}-H_{1} \\
=H_{P}-H_{R} \\
Q=\sum_{P} n_{i} \bar{h}_{i}\left(T_{p}\right)-\sum_{R} n_{i} \bar{h}_{i}\left(T_{R}\right)
\end{gathered}
$$

Enthalpy of Reaction

Consider the case where the final temperature of the products is the same as the initial temperature of the reactants (e.g., calorimeter is used to measure Q).

The heat released under this situation is referred to as the enthalpy of reaction, ΔH_{R},

$$
\begin{aligned}
Q & =\Delta H_{R} \\
& =\sum_{P} n_{i} \bar{h}_{i}\left(T_{p}\right)-\sum_{R} n_{i} \bar{h}_{i}\left(T_{R}\right) \\
& =\sum_{P} n_{i} \bar{h}_{i}\left(T_{o}\right)-\sum_{R} n_{i} \bar{h}_{i}\left(T_{o}\right) \quad \text { units }: \mathrm{kJ} \text { per kg or kmol of fuel }
\end{aligned}
$$

Heat of Combustion

The maximum amount of energy is released from a fuel when reacted with a stoichiometric amount of air and all the hydrogen and carbon contained in the fuel is converted to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$

$$
C_{\alpha} H_{\beta}+\left(\alpha+\frac{\beta}{4}\right)\left(O_{2}+3.76 N_{2}\right) \rightarrow \alpha \mathrm{CO}_{2}+\frac{\beta}{2} \mathrm{H}_{2} \mathrm{O}+3.76\left(\alpha+\frac{\beta}{4}\right) \mathrm{N}_{2}
$$

This maximum energy is commonly referred to as the heat of combustion, or the heating value, given per unit mass of fuel or air

$$
\begin{aligned}
& \Delta H_{R}=H_{P}-H_{R}<0 \text { (exothermic) } \\
& \Delta H_{R}=H_{P}-H_{R}>0 \text { (endothermic) }
\end{aligned}
$$

Heat of Combustion

There are two possible values for the heat of combustion depending on whether the water in the products is taken to be saturated liquid or vapour.

From steam tables:

$$
h_{f g}=h_{g}-h_{f}>0
$$

S

The term higher heat of combustion and heating value (HHV) is used when the water in the products is taken to be in the liquid state $\left(h_{H 2 O}=h_{f}\right)$

The term lower heat of combustion and heating value (LHV) is used when the water in the products is taken to be in the vapour state $\left(h_{H 2 O}=h_{g}\right)$

Heat of Combustion, graphical

Fuel		Molecular Weight	Heating Value		$\begin{aligned} & \text { Stoict } \\ & (\mathrm{AF})_{\mathrm{S}} \end{aligned}$
			$\begin{gathered} \mathrm{HHV} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { LHV } \\ & (\mathrm{kJ} / \mathrm{kg}) \end{aligned}$	
\longrightarrow gasoline	$\mathrm{C}_{8} \mathrm{H}_{15}$	111	47300	43000	14.6
light diesel	$\mathrm{C}_{12.3} \mathrm{H}_{22.2}$	170	44800	42500	14.5
heavy diesel	$\mathrm{C}_{14.6} \mathrm{H}_{24.8}$	200	43800	41400	14.5
\longrightarrow isooctane	$\mathrm{C}_{8} \mathrm{H}_{18}$	114	47810	44300	15.1
\rightarrow methanol	$\mathrm{CH}_{3} \mathrm{OH}$	32	22540	20050	6.5
\rightarrow ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	46	29710	26950	9.0
\rightarrow methane	CH_{4}	16	55260	49770	17.2
\longrightarrow propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44	50180	46190	15.7
nitromethane	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	61	12000	10920	1.7
heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100	48070	44560	15.2
cetane	$\mathrm{C}_{16} \mathrm{H}_{34}$	226	47280	43980	15.0
heptamethylnonane	$\mathrm{C}_{12} \mathrm{H}_{34}$	178			15.9
α-methylnaphthalene	$\mathrm{C}_{11} \mathrm{H}_{10}$	142			13.1
carbon monoxide	CO	28	10100	10100	2.5
coal (carbon)	C	12	33800	33800	11.5
butene-1	$\mathrm{C}_{4} \mathrm{H}_{8}$	56	48210	45040	14.8
triptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100	47950	44440	15.2
isodecane	$\mathrm{C}_{10} \mathrm{H}_{22}$	142	47590	44220	15.1
toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	92	42500	40600	13.5
\longrightarrow hydrogen	H_{2}	2	141800	120000	34.5

Fuel $\quad \mathrm{A} / \mathrm{F} \quad$\begin{tabular}{c}
Energy

density

$(\mathrm{MJ} / \mathrm{L}$ fuel $)$

Specific

energy

$(\mathrm{MJ} / \mathrm{kg}$ air $)$
\end{tabular}

Gasoline	14.6	32	2.9

Butanol	11.2	29.2	3.2

Ethanol	9.0	19.6	3.0

Methanol	6.5	16	3.1

Hydrogen $34.3 \quad$ ** 4.1

* Diesel about 10% more energy per volume than gasoline
** liquefied hydrogen has roughly $1 / 4$ the energy density of gasoline

Heat of Formation

Consider the following reactions taking place at atmospheric pressure and with $T_{P}=T_{R}=298 \mathrm{~K}$

$$
\begin{array}{lc}
1 / 2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \bar{Q}=-286,000 \mathrm{~kJ} / \mathrm{kmol} \mathrm{H}_{2} \mathrm{O} \\
C(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \bar{Q}=-394,000 \mathrm{~kJ} / \mathrm{kmol} \mathrm{CO}
\end{array}
$$

In these reactions $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} are formed from their elements in their natural state at standard temperature and pressure (STP) 1 atm and 298K.

Reactions of this type are called formation reactions and the corresponding measured heat release Q is referred to as the standard heat of formation (\bar{h}_{f}^{o}) so:

$$
\begin{gathered}
\bar{h}_{f, H_{2} O}^{o}=\bar{Q}=-286,000 \mathrm{~kJ} / \mathrm{kmol} \\
\bar{h}_{f, C O_{2}}^{o}=\bar{Q}=-394,000 \mathrm{~kJ} / \mathrm{kmol}
\end{gathered}
$$

Values for standard heat of formation for different species are tabulated

Heat of Formation for Different Fuels

FUEL		$h_{f}^{\prime}(\mathrm{mJ} / \mathrm{kmol})$
$\mathrm{CM}_{2}(\mathrm{~g})$	Cyanogen	309.1
$\mathrm{H}_{2}(\mathrm{~g})$	Hydrogen	0.0
$\mathrm{NH}_{3}(\mathrm{~g})$	Ammonia	-45.7
$\mathrm{CH}_{4}(\mathrm{~g})$	Methane	-74.9
$\left.\mathrm{CH}_{4} \mathrm{H}_{4} \mathrm{~g}\right)$	Propane	- 109.9
$\mathrm{CH}_{17}(1)$	Gasoline ${ }^{2}$	-305.6
$\mathrm{C}_{4} \mathrm{H}_{18}$ (1)	Octane	-249.5
$\mathrm{C}_{4} \mathrm{H}_{18}$ (1)	Isooctane	-259.3
$\mathrm{C}_{4,4,4} \mathrm{H}_{24.9}$ (l)	Diesel ${ }^{2}$	- 174.0
$\mathrm{C}_{6} \mathrm{H}_{32}$ (l)	Pentadecane	-428.9
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	Acetylene	226.7
$\mathrm{C}_{4} \mathrm{H}_{6}$ (l)	Benzene	48.91
$\mathrm{C}_{10} \mathrm{H}_{4}$ (s)	Naphthalene	78.1
$\mathrm{CH}_{4} \mathrm{O}$ (l)	Methanol	-239.1
$\mathrm{C}_{2} \mathrm{H}_{0} \mathrm{O}$ (l)	Ethanol	-277.2
$\mathrm{CH}_{4} \mathrm{NO}_{2}$ (i)	Nitromethane	-113.1
C (s)	Graphite	0.0
$\mathrm{C}_{1 \%} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}_{2}$ (8)	Good coil ${ }^{2}$	-10000.0

Enthalpy Scale for a Reacting System

By international convention, the enthalpy of every element in its natural state (e.g., $O_{2}(g), N_{2}(g), H_{2}(g), C(s)$) at STP has been set to zero

$$
\text { i.e, } \bar{h}(1 \mathrm{~atm}, 298 K)=\bar{h}_{f}^{o}=0
$$

Consider the following identity:

$$
\bar{h}(P, T)=\bar{h}(1 \mathrm{~atm}, 298 K)+[\bar{h}(P, T)-\bar{h}(1 \mathrm{~atm}, 298 \mathrm{~K})]
$$

Therefore, the enthalpy of the i'th component in a mixture is:

$$
\bar{h}_{i}(P, T)=\underbrace{\bar{h}_{f, i}^{o}}_{\text {chemical enthalpy 298K }}+\underbrace{\left[\bar{h}_{i}(P, T)-\bar{h}_{i}(1 \operatorname{atm}, 298 K)\right.}_{\text {sensible enthalpy }=\int_{298 K}^{T} c_{p, i} d T}]
$$

The data is also found in the JANNAF tables provided at course web site

Table A. 2 Carbon dioxide $\left(\mathrm{CO}_{2}\right), \mathrm{MW}=44.911$, enthalpy of formation $\varphi 298 \mathrm{~K}$ $\{\mathrm{k} / / \mathrm{kmol})=-393,546$

$T(\mathrm{~K})$	$\underset{(\mathrm{C} \cdot \mathrm{c} / \mathrm{kmol}-\mathrm{K})}{\bar{c}_{2}}$	$\begin{gathered} \left(\bar{F}(T)-\bar{H}_{f}(298)\right) \\ (\mathrm{k} J / \mathrm{kmol}) \end{gathered}$	H(T) ($\mathrm{k} . \mathrm{J} / \mathrm{kmol}$)	$\begin{gathered} T^{T}(T) \\ (\mathrm{k} / \mathrm{l} / \mathrm{kimol}-\mathrm{K}) \end{gathered}$	$\begin{gathered} P(T) \\ (\mathrm{k} / \text { knol }) \end{gathered}$
200	32387	$-3,423$	-393.483	199876	$-394,126$
298	37.198	0	-397,546	213.736	-394,428
300	37280	69	-397,547	213.966	-394,433
400	41.276	4,009	$-399,617$	225257	-394,718
500	44.569	3,301	-393,712	234833	-394,983
600	47.313	12,899	-393,844	243209	-393,226
700	49.617	17,749	-394,013	250.680	-395,443
800	51.550	22,810	-394,213	257.436	-395,635
900	53.136	28,047	-394,43j	263.603	-395,799
1,000	34.360	33,425	$-394,659$	269.268	-395,939
1,100	55.335	38,911	$-394,875$	274.495	-396,056
1,200	56.205	44,488	- 395083	279.348	- 396,155
1,300	56.984	50,149	-395,287	283878	$-396,236$
1,400	57.677	55,882	-395,488	288.127	-396,301
1,500	58.292	61,681	-395,691	292128	$-396,352$
1,600	58.836	67,538	-395,897	295908	-396,389
1,700	59.316	73,446	$-396,110$	299.489	-396,414
1,800	59.738	79,399	-396,322	302892	-396,425
1.900	60.108	85,392	-396,564	306.132	-396,424
2,000	60.433	91,420	-396,808	309.223	-396,410
2,100	60.717	97,477	-397,065	312179	$-396,384$
2,200	60.966	103,562	-397,338	315009	-396,346

Adiabatic Flame Temperature

Consider the following adiabatic constant pressure process:

For a constant pressure process, the final products temperature, T_{a}, is known as the adiabatic flame temperature (AFT).

$$
\begin{gathered}
Q=\sum_{P} n_{i} \bar{h}_{i}\left(T_{p}\right)-\sum_{R} n_{i} \bar{h}_{i}\left(T_{R}\right)=0 \\
\sum_{P} n_{i} \bar{h}_{i}\left(T_{a}\right)=\sum_{R} n_{i} \bar{h}_{i}\left(T_{1}\right)
\end{gathered}
$$

For a given reaction where the n_{i} 's are known for both the reactants and the products, T_{a} can be calculated explicitly.

Adiabatic Flame Temperature

$$
\begin{aligned}
& \sum_{P} n_{i} \bar{h}_{i}\left(T_{a}\right)=\sum_{R} n_{i} \bar{h}_{i}\left(T_{1}\right) \\
& \sum_{P} n_{i}\left[\bar{h}_{f, i}^{o}+\left(\bar{h}_{i}\left(T_{a}\right)-\bar{h}_{i}(298 K)\right)\right]=\sum_{R} n_{i}\left[\bar{h}_{f, i}^{o}+\left(\bar{h}_{i}\left(T_{1}\right)-\bar{h}_{i}(298 K)\right)\right] \\
& \sum_{P} n_{i}\left(\bar{h}_{i}\left(T_{a}\right)-\bar{h}_{i}(298 K)\right)=\sum_{R} n_{i}\left(\bar{h}_{i}\left(T_{1}\right)-\bar{h}_{i}(298 K)\right)-\left[\sum_{P} n_{i} \bar{h}_{f, i}^{o}-\sum_{R} n_{i} \bar{h}_{f, i}^{o}\right] \\
& \text { Sensible heat of products } \\
& \text { Sensible heat of reactants } \\
& \text { (equal to } 0 \text { if } T_{1}=298 \mathrm{~K} \text {) } \\
& \Delta H_{R}^{o} \\
& O R \quad \sum_{P} n_{i} \int_{298}^{T_{a}} c_{p, i} d T=\sum_{R} n_{i} \int_{298}^{T_{i}} c_{p, i} d T-\left[\sum_{P} n_{i} \bar{h}_{f, i}^{o}-\sum_{R} n_{i} \bar{h}_{f, i}^{o}\right]
\end{aligned}
$$

Adiabatic Flame Temperature, example

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+12.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+47 \mathrm{~N}_{2}
$$

Consider constant pressure complete combustion of stoichiometric liquid butane-air initially at 298K and 1 atm

$$
\begin{aligned}
& \sum_{P} n_{i}\left\{\bar{h}_{i}\left(T_{a}\right)-\bar{h}_{i}(298 K)\right\}=\left[\sum_{R} n_{i}\left(\bar{h}_{i}\left(T_{1}\right)-\bar{h}_{i}(298 K)\right)\right]-\left[\sum_{P} n_{i} \bar{h}_{f, i}^{o}-\sum_{R} n_{i} \bar{h}_{f, i}^{o}\right] \\
& \text { Note: } \bar{h}_{f, O_{2}}^{o}=\bar{h}_{f, N_{2}}^{o}=0 \\
& \left.8\left\{\bar{h}_{C O_{2}}\left(T_{a}\right)-\bar{h}_{C O_{2}}(298 K)\right\}+9\left\{\bar{h}_{H_{2} O}\left(T_{a}\right)-\bar{h}_{H_{2} O}(298 K)\right\}+47 \bar{h}_{N_{2}}\left(T_{a}\right)-\bar{h}_{N_{2}}(298 K)\right\} \\
& =-\left[8 \bar{h}_{f, C O_{2}}^{o}+9 \bar{h}_{f, H_{2} O}^{o}-\bar{h}_{f, C_{i} H_{13}}^{o}\right]
\end{aligned}
$$

Look up enthalpy of formation values and iterate $T_{a} \rightarrow 2410 \mathrm{~K}$

Adiabatic Flame Temperature with products at equilibrium

FUEL		$T_{a, \phi=1.0}(\mathrm{~K})$
$\mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{~g})$	Cyanogen	2596
$\mathrm{H}_{2}(\mathrm{~g})$	Hydrogen	2383 -
$\mathrm{NH}_{3}(\mathrm{~g})$	Ammonia	2076
CH_{4} (g)	Methane	2227
$\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{~g})$	Propane	2268
$\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{H}_{4}(\mathrm{l})$	Octane	2266
$\mathrm{C}_{15} \mathrm{H}_{3} \mathrm{H}_{2}(\mathrm{l})$	Pentadecane	2269
$\mathrm{C}_{27} \mathrm{H}_{\text {fif }}(\mathrm{g}$)	Eicosane	2291
$\mathrm{C}_{3} \mathrm{H}_{2}(\mathrm{~g})$	Acerylene	2540
$\mathrm{C}_{[0} \mathrm{H}_{8}(\mathrm{~s})$	Naphthatene	2328
$\mathrm{CH}_{4} \mathrm{O}(l)$	Methanol	2151
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{l})$	Ethatol	2197
$\mathrm{CH}_{3} \mathrm{NO}_{2}(\mathrm{l})$	Nitromethane	2545

Adiabatic Flame Temperature, example

Now consider Octane air with 10% excess air

$$
\mathrm{C}_{8} \mathrm{H}_{18}+1.1(12.5)\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+1.25 \mathrm{O}_{2}+51.7 \mathrm{~N}_{2}
$$

$$
\begin{array}{r}
8\left\{\bar{h}_{\mathrm{CO}_{2}}\left(T_{a}\right)-\bar{h}_{\mathrm{CO}_{2}}(298 \mathrm{~K})\right\}+9\left\{\bar{h}_{\mathrm{H}_{2} \mathrm{O}}\left(T_{a}\right)-\bar{h}_{\mathrm{H}_{2} \mathrm{O}}(298 \mathrm{~K})\right\}+1.25\left\{\bar{h}_{O_{2}}\left(T_{a}\right)-\bar{h}_{O_{2}}(298 \mathrm{~K})\right\} \\
+51.7\left\{\bar{h}_{N_{2}}\left(T_{a}\right)-\bar{h}_{N_{2}}(298 \mathrm{~K})\right\}=-\underbrace{\left[8 \bar{h}_{f, \mathrm{CO}_{2}}^{o}+9 \bar{h}_{f, \mathrm{H}_{2} \mathrm{O}}^{o}-\bar{h}_{f, C_{8} H_{18}}^{o}\right]}_{\Delta H_{R} \text { same as for } \phi=1}
\end{array}
$$

Look up values and iteration gives $T_{a}=2262 \mathrm{~K}$
Excess air adds 6 moles of diatomic molecules $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{N}_{2}\right)$ into the products that does not contribute to heat release just soaks it up.

Adiabatic Flame Temperature with products at equilibrium

Constant Volume AFT

Consider the case where the piston is fixed and the cylinder is perfectly insulated so the process is adiabatic $(Q=0)$

$$
\begin{gathered}
Q=\sum_{P} n_{i} \bar{u}_{i}\left(T_{p}\right)-\sum_{R} n_{i} \bar{u}_{i}\left(T_{R}\right)=0 \\
\sum_{P} n_{i} \bar{u}_{i}\left(T_{a}\right)=\sum_{R} n_{i} \bar{u}_{i}\left(T_{1}\right)
\end{gathered}
$$

Note $h=u+p v=u+R T$, so

$$
\sum_{P} n_{i}\left(\bar{h}_{i}\left(T_{a}\right)-\bar{R} T\right)=\sum_{R} n_{i}\left(\bar{h}_{i}\left(T_{1}\right)-\bar{R} T\right)
$$

Constant Volume AFT

$$
\begin{gathered}
\sum_{P} n_{i}\left[\bar{h}_{f, i}^{o}+\left(\bar{h}_{i}\left(T_{a}\right)-\bar{h}_{i}(298 K)\right)-\bar{R} T_{i}\right]=\sum_{R} n_{i}\left[\bar{h}_{f, i}^{o}+\left(\bar{h}_{i}\left(T_{1}\right)-\bar{h}_{i}(298 K)\right)-\bar{R} T_{i}\right] \\
\sum_{P} n_{i}\left(\bar{h}_{i}\left(T_{a}\right)-\bar{h}_{i}(298 K)\right)=[\underbrace{\left.\sum_{p} n_{i} n_{i}\left(\bar{h}_{i}\left(T_{1}\right)-\bar{h}_{i}(298 K)\right)\right]-\left[\sum_{P} n_{i} \bar{h}_{f, i}^{o}-\sum_{R} n_{i} n_{i} \bar{R}_{i} \bar{h}_{f, i}^{o}\right]}
\end{gathered}
$$

Extra term compared to constant pressure AFT (term >0)

The AFT for a constant volume process is larger than for a constant pressure process.

The AFT is lower for constant pressure process since there is $P d v$ work done

Constant Volume Combustion Pressure

Assuming ideal gas behaviour:

$$
\begin{aligned}
V_{R} & =V_{P} \\
\frac{n_{R} \bar{R} T_{R}}{P_{R}} & =\frac{n_{p} \bar{R} T_{p}}{P_{p}} \\
\frac{P_{p}}{P_{R}} & =\left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{p}}{T_{R}}\right) \rightarrow \frac{P_{C V}}{P_{i}}=\left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{a}}{T_{i}}\right)
\end{aligned}
$$

For large hydrocarbons like octane the mole ratio term is close to one

$$
\begin{gathered}
\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+12.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+47 \mathrm{~N}_{2} \\
\frac{n_{p}}{n_{R}}=\frac{8+9+47}{1+12.5(4.76)}=\frac{64}{60.5}=1.06
\end{gathered}
$$

Engine Fuel Comparison

Stoichiometric octane-air ($\Delta H_{R}=47.9 \mathrm{MJ} / \mathrm{kg}$-fuel):

$$
\begin{aligned}
& C_{8} \mathrm{H}_{18}+12.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}+47 \mathrm{~N}_{2} \\
& \frac{P_{C V}}{P_{i}}=\left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{a}}{T_{i}}\right)=\left(\frac{64}{60.5}\right)\left(\frac{2266}{298}\right)=1.06 \cdot 7.604=8.1
\end{aligned}
$$

Stoichiometric hydrogen-air ($\Delta H_{R}=141.6 \mathrm{MJ} / \mathrm{kg}$-fuel):

$$
\begin{aligned}
& \mathrm{H}_{2}+0.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 1 \mathrm{H}_{2} \mathrm{O}+1.88 \mathrm{~N}_{2} \\
& \frac{P_{C V}}{P_{i}}=\left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{a}}{T_{i}}\right)=\left(\frac{2.88}{3.38}\right)\left(\frac{2383}{298}\right)=0.85 \cdot 8.0=6.8
\end{aligned}
$$

Stoichiometric ethanol-air ($\Delta H_{R}=29.7 \mathrm{MJ} / \mathrm{kg}$-fuel):

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+13.2 \mathrm{~N}_{2} \\
& \frac{P_{C V}}{P_{i}}=\left(\frac{n_{p}}{n_{R}}\right)\left(\frac{T_{a}}{T_{i}}\right)=\left(\frac{18.2}{17.7}\right)\left(\frac{2197}{298}\right)=1.02 \cdot 7.37=7.5
\end{aligned}
$$

